CTRP9 transgenic mice are protected from diet-induced obesity and metabolic dysfunction.

نویسندگان

  • Jonathan M Peterson
  • Zhikui Wei
  • Marcus M Seldin
  • Mardi S Byerly
  • Susan Aja
  • G William Wong
چکیده

CTRP9 is a secreted multimeric protein of the C1q family and the closest paralog of the insulin-sensitizing adipokine, adiponectin. The metabolic function of this adipose tissue-derived plasma protein remains largely unknown. Here, we show that the circulating levels of CTRP9 are downregulated in diet-induced obese mice and upregulated upon refeeding. Overexpressing CTRP9 resulted in lean mice that dramatically resisted weight gain induced by a high-fat diet, largely through decreased food intake and increased basal metabolism. Enhanced fat oxidation in CTRP9 transgenic mice resulted from increases in skeletal muscle mitochondrial content, expression of enzymes involved in fatty acid oxidation (LCAD and MCAD), and chronic AMPK activation. Hepatic and skeletal muscle triglyceride levels were substantially decreased in transgenic mice. Consequently, CTRP9 transgenic mice had a greatly improved metabolic profile with markedly reduced fasting insulin and glucose levels. The high-fat diet-induced obesity, insulin resistance, and hepatic steatosis observed in wild-type mice were prevented in transgenic mice. Consistent with the in vivo data, recombinant protein significantly enhanced fat oxidation in L6 myotubes via AMPK activation and reduced lipid accumulation in H4IIE hepatocytes. Collectively, these data establish CTRP9 as a novel metabolic regulator and a new component of the metabolic network that links adipose tissue to lipid metabolism in skeletal muscle and liver.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice.

Transgenic overexpression of CTRP9, a secreted hormone downregulated in obesity, confers striking protection against diet-induced obesity and type 2 diabetes. However, the physiological relevance of this adiponectin-related plasma protein remains undefined. Here, we used gene targeting to establish the metabolic function of CTRP9 in a physiological context. Mice lacking CTRP9 were obese and gai...

متن کامل

Transgenic mice with ectopic expression of constitutively active TLR4 in adipose tissues do not show impaired insulin sensitivity

INTRODUCTION Chronic low-grade inflammation is associated with obesity and diabetes. However, what causes and mediates chronic inflammation in metabolic disorders is not well understood. Toll-like receptor 4 (TLR4) mediates both infection-induced and sterile inflammation by recognizing pathogen-associated molecular patterns and endogenous molecules, respectively. Saturated fatty acids can activ...

متن کامل

Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype.

RATIONALE Endothelial dysfunction is a characteristic feature of diabetes and obesity in animal models and humans. Deficits in nitric oxide production by endothelial nitric oxide synthase (eNOS) are associated with insulin resistance, which is exacerbated by high-fat diet. Nevertheless, the metabolic effects of increasing eNOS levels have not been studied. OBJECTIVE The current study was desi...

متن کامل

Sexually dimorphic myeloid inflammatory and metabolic responses to diet-induced obesity.

It is well known in clinical and animal studies that women and men have different disease risk as well as different disease physiology. Women of reproductive age are protected from metabolic and cardiovascular disease compared with postmenopausal women and men. Most murine studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of similar protection...

متن کامل

Thromboxane synthase deficiency improves insulin action and attenuates adipose tissue fibrosis.

Thromboxane A2, an arachidonic acid-derived eicosanoid generated by thromboxane synthase (TBXAS), plays critical roles in hemostasis and inflammation. However, the contribution of thromboxane A2 to obesity-linked metabolic dysfunction remains incompletely understood. Here, we used in vitro and mouse models to better define the role of TBXAS in metabolic homeostasis. We found that adipose expres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 305 5  شماره 

صفحات  -

تاریخ انتشار 2013